3.263 \(\int \frac {\sec ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=137 \[ \frac {\left (3 a^2-2 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{8 b^{5/2} f}-\frac {3 (a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{8 b^2 f}+\frac {\tan (e+f x) \sec ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b f} \]

[Out]

1/8*(3*a^2-2*a*b+3*b^2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(5/2)/f-3/8*(a-b)*(a+b+b*tan(
f*x+e)^2)^(1/2)*tan(f*x+e)/b^2/f+1/4*sec(f*x+e)^2*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4146, 416, 388, 217, 206} \[ \frac {\left (3 a^2-2 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{8 b^{5/2} f}-\frac {3 (a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{8 b^2 f}+\frac {\tan (e+f x) \sec ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((3*a^2 - 2*a*b + 3*b^2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(5/2)*f) - (3*(a
 - b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*b^2*f) + (Sec[e + f*x]^2*Tan[e + f*x]*Sqrt[a + b + b*Tan
[e + f*x]^2])/(4*b*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \frac {\sec ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (1+x^2\right )^2}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\sec ^2(e+f x) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 b f}+\frac {\operatorname {Subst}\left (\int \frac {-a+3 b-3 (a-b) x^2}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 b f}\\ &=-\frac {3 (a-b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\sec ^2(e+f x) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 b f}+\frac {\left (3 a^2-2 a b+3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b^2 f}\\ &=-\frac {3 (a-b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\sec ^2(e+f x) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 b f}+\frac {\left (3 a^2-2 a b+3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 b^2 f}\\ &=\frac {\left (3 a^2-2 a b+3 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac {3 (a-b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\sec ^2(e+f x) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 9.53, size = 326, normalized size = 2.38 \[ \frac {e^{i (e+f x)} \sec (e+f x) \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (-\frac {\left (3 a^2-2 a b+3 b^2\right ) \log \left (\frac {4 i f \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}-4 \sqrt {b} f \left (-1+e^{2 i (e+f x)}\right )}{1+e^{2 i (e+f x)}}\right )}{\sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}-\frac {i \sqrt {b} \left (-1+e^{2 i (e+f x)}\right ) \left (b \left (14 e^{2 i (e+f x)}+3 e^{4 i (e+f x)}+3\right )-3 a \left (1+e^{2 i (e+f x)}\right )^2\right )}{\left (1+e^{2 i (e+f x)}\right )^4}\right ) \sqrt {a \cos (2 e+2 f x)+a+2 b}}{8 \sqrt {2} b^{5/2} f \sqrt {a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Sqrt[a + 2*b + a*Cos[2*e + 2*
f*x]]*(((-I)*Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))*(-3*a*(1 + E^((2*I)*(e + f*x)))^2 + b*(3 + 14*E^((2*I)*(e + f*
x)) + 3*E^((4*I)*(e + f*x)))))/(1 + E^((2*I)*(e + f*x)))^4 - ((3*a^2 - 2*a*b + 3*b^2)*Log[(-4*Sqrt[b]*(-1 + E^
((2*I)*(e + f*x)))*f + (4*I)*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*f)/(1 + E^((2*I)*(e
 + f*x)))])/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*Sec[e + f*x])/(8*Sqrt[2]*b^(5/2)*f*
Sqrt[a + b*Sec[e + f*x]^2])

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 396, normalized size = 2.89 \[ \left [\frac {{\left (3 \, a^{2} - 2 \, a b + 3 \, b^{2}\right )} \sqrt {b} \cos \left (f x + e\right )^{3} \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) - 4 \, {\left (3 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, b^{3} f \cos \left (f x + e\right )^{3}}, \frac {{\left (3 \, a^{2} - 2 \, a b + 3 \, b^{2}\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - 2 \, {\left (3 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, b^{3} f \cos \left (f x + e\right )^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/32*((3*a^2 - 2*a*b + 3*b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*
cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e
)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*(3*(a*b - b^2)*cos(f*x + e)^2 - 2*b^2)*sqrt((a*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2)*sin(f*x + e))/(b^3*f*cos(f*x + e)^3), 1/16*((3*a^2 - 2*a*b + 3*b^2)*sqrt(-b)*arctan(-1/2*(
(a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x
+ e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 - 2*(3*(a*b - b^2)*cos(f*x + e)^2 - 2*b^2)*sqrt((a*cos(f*x + e)^2
+ b)/cos(f*x + e)^2)*sin(f*x + e))/(b^3*f*cos(f*x + e)^3)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec \left (f x + e\right )^{6}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)^6/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

maple [C]  time = 2.20, size = 1756, normalized size = 12.82 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/8/f*sin(f*x+e)*(-6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/
(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*E
llipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b)
,(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a^2
+4*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I
*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f
*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(
1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a*b-6*2^(1/2)*((I*a^(1
/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*co
s(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2
)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1
/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*cos(f*x+e)^4*sin(f*x+e)*b^2+3*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x
+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*
b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*cos(f*x+e)^4*sin(
f*x+e)*a^2-2*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1
/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF(
(-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-
a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a*b+3*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*
b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(
f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*
x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*cos(f*x+e)^4*sin(f*x+e)*b^2+3*(
(2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^5*a^2-3*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)
*a*b-3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^4*a^2+3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)*a*b+((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^3*a*b-3*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2)*b^2-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^2*a*b+3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/
2)+a-b)/(a+b))^(1/2)*b^2-2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)*b^2+2*((2*I*a^(1/2)*b^(1/2)+a-b)
/(a+b))^(1/2)*b^2)/(-1+cos(f*x+e))/cos(f*x+e)^5/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)/((2*I*a^(1/2)*b^(1/2)+
a-b)/(a+b))^(1/2)/b^2

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 160, normalized size = 1.17 \[ \frac {\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )^{3}}{b} + \frac {3 \, {\left (a + b\right )} a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {5}{2}}} + \frac {3 \, {\left (a + b\right )} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} - \frac {8 \, a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} - \frac {3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \tan \left (f x + e\right )}{b^{2}} + \frac {8 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )}{b}}{8 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

1/8*(2*sqrt(b*tan(f*x + e)^2 + a + b)*tan(f*x + e)^3/b + 3*(a + b)*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/b
^(5/2) + 3*(a + b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/b^(3/2) - 8*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b
))/b^(3/2) - 3*sqrt(b*tan(f*x + e)^2 + a + b)*(a + b)*tan(f*x + e)/b^2 + 8*sqrt(b*tan(f*x + e)^2 + a + b)*tan(
f*x + e)/b)/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\cos \left (e+f\,x\right )}^6\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2)),x)

[Out]

int(1/(cos(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{6}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**6/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sec(e + f*x)**6/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________